
Appendix 3: General Notions
Regarding the Diagnosis of the
Functioning State of Machine Tools

A3.1 COMPELLED VIBRATIONS

Compelled vibrations appear because of kinematics and/or dynamic fac-
tors. They have a permanent occurrence and major consequences on the
working of the technological equipment, and on the equipment, techno-
logical process, and workpiece quality.

The usual classification of this type of vibration incorporates (a)
compelled vibrations that depend on the working process, including such
factors as stock variation, the periodic variation of the chip cross-section
(milling, stitching), workpiece material hardness variation, and work-
speed variation; being dependent on the working process characteristics
these vibrations are very difficult to avoid; and (b) compelled vibrations
that are not dependent on the working process, which appear because
of a deficiency mounting of the equipment, technological and assembling
lack of precision of the parts, and because of some specific features. This
type of vibration can be observed during idle running of the equipment.

The following are some influence areas of factors that are indepen-
dent of the working process.

The floor vibrations have a complex spectrum of periodic and ran-
dom components and also shocks with a frequency range of 1, . . . , 40 Hz
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with amplitudes between 0.5, . . . , 15 mm. The functioning of electrical
engines (especially three-phased asynchronous engines and continuous
current engines) induces a wider spectrum, 16, . . . , 530 Hz, with ampli-
tudes up to 0.4 mm.

A special influence on gearing working is made by pitch errors, pro-
file errors, the wheels’ eccentricities, and the axle deformations on which
they are mounted. Two critical zones have been observed in experiments:
one corresponding to the specific frequency of the elastic system of the
teeth and the other corresponding to the specific frequency of the elastic
system gear-shaft.

The driving belt transmissions introduce vibrations corresponding
to specific throbs. They can be computed using the formula:

ωn =
πn

l

√
S

m

where l is the length of the belt, m is the weight of the belt, S is the
belt tension, and n is the pulsation number (n = 1, 2, 3, . . . ).

The vibrations caused by the movement of the bearings depends
mainly on shaft rotation frequency and on the number of rolling ele-
ments. The functioning of hydraulic systems, of cam mechanisms, Malta
cross, and the like also produce compelled vibrations of frequencies and
amplitudes which can be estimated.

Compelled vibrations, within or outside the process, appear and
take place simultaneously, which means that vibrational phenomena
have a complex nature and their consequences should be evaluated tak-
ing into account all the stages of the working process.

A3.2 MEASUREMENT OF VIBRATIONS,
SPECIFIC QUANTITIES

The vibrator signal picked up in the measurement points using transla-
tors is, usually, an aleatory sum of periodic and nonperiodic vibrations.
Ways of processing and evaluating this signal are described below.

A3.2.1 Periodic Determinist Vibrations

The pure harmonic movement (Fig. A3.1) is characterized by the math-
ematical equation:

x(t) = Xv ∗ sin(ωt + θ)
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FIGURE A3.1 Pure harmonic movement.

where Xv is movement amplitude (the peak value), θ is phase difference,
and ω is movement throb.

By derivation one can obtain the movement speed and acceleration,
respectively:

v(t) =
dx

dt
= ωXv cos(ωt + θ) = Vv sin

(
ωt + θ +

π

2

)

a(t) =
d2x

dt2
= −ω2Xv sin(ωt + θ) = Av sin(ωt + θ + π)

The speed and the acceleration of the movement are also harmonic,
having the same throb as the displacement, with a phase difference of
π/2 and π, respectively.

The characterization of periodic determinist vibrations is possible
not only by throb and amplitude but also by defining some features
related to the process progress during one period:

Absolute average value (mathematical), XA:

XA =
1
T

∫ T

0
|x(t)|dt

Effective value (square average), Xef (RMS):

Xef =

√
1
T

∫ T

0
x2(t)dt
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The configuration element, Ff :

Ff =
Xef

Xa

The peak element, Fv:

Fv =
Xv

Xef

Note: in the case of pure harmonic movement between XV , XA,
and Xef for Ff and FV , respectively, the mathematical relationships are:

Xef =
π

2
√

2
XA =

1√
2
XV

Ff =
π

2
√

2
= 1.11 (≈ 1 dB)

FV =
√

2 = 1.414 (≈ 3 dB)

The deformation energy (elastic) of the elastic system, Wp is

Wp =
k

2

∫ T

0
x2(t)dt

Among these parameters the most important is Xef because it is
proportional to the vibration power; this can be seen from the previous
mathematical formula.

A3.2.2 Aleatory Vibrations

In this case movement is irregular and not repeated in time; the vibra-
tion should be monitored constantly (theoretically, infinitely); however,
this is impossible. In practical terms it can work at specific intervals of
time, which are called “achievements” of the periodic process. All these
“achievements,” picked up in similar conditions, form the aleatory pro-
cess itself. This method requires a very long time; as a result, one can
introduce some probabilistic features that are capable of characterization
of the aleatory vibrations.
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The performances can be interpreted in terms of time or overall
(Fig. A3.2). The amplitude in a specific time t1 is an aleatory feature,
and it is characterized by the statistical values during the considered
“achievements”:

x1(t1) = [x1(t1), x2(t1), x3(t1) . . . ]

If the same probability is considered for every “achievement” xk(t) the
following features can be described:

The average value of the amplitude, on time t:

m(t1) = lim
1
n

n∑
k=1

xk(t1)

The autocorrelation function, which can appreciate in what measure the
aleatory process remains identical with itself:

ψ(t1, τ) = lim
1
n

n∑
k=1

xk(t1) · xk(t1 + τ)

FIGURE A3.2 Aleatory vibrations.
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The intercorrelation function:

ψ′(t1, τ) = lim
1
n

n∑
k=1

xk(t1) · yk(t1 + τ)

which estimates the way two aleatory signals x(t), y(t) are similar.

A3.2.3 Ergodic and Stationary
Aleatory Vibrations

Stationary processes are those processes for which the average value and
autocorrelation function do not depend on the specific time t1:

m(t1) = m(t2) = · · · = m

ψ(t1, τ) = ψ(t2, τ) = · · · = ψ(τ)

For every “achievement” of a stationary aleatory process one can calcu-
late the average value and the autocorrelation function, respectively:

mx(k) = lim
1
T

∫ T/2

T/2
xk(t)dt

ψ(k, τ) = lim
1
T

∫ T/2

T/2
xk(t) · xk(t + τ)

This means that an ergodic aleatory process can be characterized by a
“single achievement” which is a great advantage in practice.

Other features for these processes inclue the repartition function
of the amplitudes; F (x) is defined by the probability that the movement
amplitude is inferior to a given value x:

F (x) = P (−∞ < x(t) < x) = P (x(t) < x)

This function is a monotone increasing function (Fig. A3.3) and it helps
determine the probability that the movement amplitude can be found
in a given range (a, b):

P (a < x(t) < b) = F (b) − F (a)

In addition, the amplitude probability density is the limit ratio between
the probability that the momentary amplitude of the aleatory movement
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FIGURE A3.3 Repartition function of the amplitudes, F (x).

can be found stuck between a given interval and the magnitude of this
interval when it tends to zero:

p(x) = lim
P (x ≤ x(t) ≤ x + ∆x)

∆x

In conformity with the previous relation it can be inferred that

p(x) = lim
F (x + ∆x) − F (x)

∆x
=

dF (x)
dx

The most well-known analytical form for the amplitude probability
density function is the Gaussian (Fig. A3.4).

A3.2.4 Noise and Acoustic Emission

A3.2.4.1 Sound and Noise

Sound is the sensation that is perceptible by the human ear as a result of
rapid fluctuations of air pressure; it represents the mechanical vibration
of an elastic medium in which the energy can be propagated from the
source by progressive sound waves. The noise is usually described as a
sound or a sum of undesirable sounds. It is considered to be a byproduct
of daily activity.

The characteristic of sound waves is that substantial particles os-
cillate with respect to an equilibrium position and the wave propagation
speed (the sound speed) is significantly higher than the oscillation speed
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FIGURE A3.4 Gauss form for the amplitude probability density function.
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FIGURE A3.5 Dependency of wavelength by frequency.

of the particles. The distance traveled by the front wave during an oscil-
lation period is called the wavelength: λ25 = c/f = c ∗ T , where c is the
propagation of the sound speed, f is the frequency, and T is the period
or the duration of a complete oscillation.

The dependency of the wavelength on the frequency is shown in
Figure A3.5, where the medium of sound propagation is air; for this
medium the speed propagation is given by:

c = f

√
γ0

p

ρ
,

where γ0 is the ratio between the specific heat on constant pressure and
the specific heat on constant volume, p is static pressure, and ρ is the
mass of the volume unit of the medium. Depending on the distance be-
tween source and receiver, the sound waves are considered to propagate
in the shape of progressive plane waves or progressive spherical waves
while the source can be pointlike or linear.

Decibel. The introduction of a decibel measurement scale (dB)
for a subjective evaluation of sound power is based on Weber–Fechner
physiological law. According to this law, the subjective sensation is pro-
portional to the decimal logarithm of the excitation when the reference
level of the acoustic intensity is zero. The lowest acoustic pressure that
the human ear can sense is 20 mPa, which is 5 ∗ 109 times weaker than
normal atmospheric pressure.

The sonorous pressure, expressed in mPa, varies in a very large
range from 20 to 108 mPa. Therefore, it is difficult to do mathematical
calculus using such a scale. The decibel scale (Fig. A3.6) avoids this dif-
ficulty because it uses an audibility threshold of the value 20 mPa. This
value is considered to be 0 dB. Consequently, every time the acoustic
pressure (in Pa) is multiplied by 10, 20 dB will be added to the decibel
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FIGURE A3.6 Decibel scale.
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level; hence, 200 mPa corresponds to 20 dB, 2000 mPa corresponds to
40 dB, and so on. So, the scale in decibels compresses the values from
20 to 20 million mPa in a range of 0 to 120 dB.

Another useful aspect of the decibel scale is that it offers a better
approximation of the noise threshold by human perception; the human
ear reacts to relative changes of threshold. On this scale, 1 dB variation is
the same relative variation no matter where it is placed on the scale, 1 dB
being also the lowest variation that humans can sense. An increase of
6 dB represents twice the threshold of acoustic pressure and an increase
of 10 dB is necessary in order to obtain a sound twice as strong.

Physiological Perception of the Noise. The human auditory ap-
paratus, the ear, allows the perception of sounds produced by different
sound waves with frequencies between 16 Hz and 20 kHz (the audibility
domain). The maximum sensitivity of the ear is in the range of 2000 and
6000 Hz.

If two sounds have frequencies f1 and f2 it is said that they are
separated by the interval f1/f2. If f2 > f1 those two frequencies have
the bandwidth ∆f = f1 − f2. In the acoustic industry, bandwidths
having an octave and a tierce (a third of an octave) which have the
corresponding intervals of 2 and 3

√
2 = 1.26, respectively, are very im-

portant. The central frequency fc of an octave is the frequency that has
the limited frequencies f1 and f2 such as fc =

√
2 ∗ f1. When band-

widths have an octave, the normalized central frequencies are 31, 63,
125, 250, 500, 1000, 2000, 4000, 8000, 16,000 Hz and upward.

In order for a sound to be perceptible, it is necessary that its
sonorous intensity have a specific minimal level that depends on sound
frequency and on the sensibility of the ear. The lower limit of the acous-
tic pressure, for a given frequency that can be heard by a human being
is called the audibility threshold. It is considered to be a sound with the
frequency of 1000 Hz and sonorous pressure of 2∗10−5 N/m2. For lower
frequency sounds (<1000 Hz) the audibility threshold increases.

On the other hand, very strong sounds create pressure on the
eardrum that can induce pain. The threshold where the pain appears
is 2 ∗ 10 N/m2 for the frequency of 1000 Hz. The power of the sounds
represents a feature according to which the sounds can be arranged from
weak to strong. Subjective perception of a sound or noise strength de-
pends on the acoustic pressure level and on its spectral characteristic.

Figure A3.7 illustrates Fletcher–Munson izosonic curves. Standard
sound has the frequency 1000 Hz for an acoustic pressure of 1 dB.
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FIGURE A3.7 The Fletcher–Munson izosonic curves.

In order to appreciate the acoustic pressure level the term moderate
acoustic level has been used. Hence, the measurement apparatus is
equipped with balanced filters given by the A, B, C, or D curves in
Figure A3.8. The most used moderate acoustic level is represented by
the A curve, especially in industry and transportation. In the aerospace
industry the moderate acoustic level is illustrated by the D curve.

FIGURE A3.8 Balanced filters for measurement apparatus.

2002 by Marcel Dekker, Inc. All Rights Reserved.



Diagnosis of the Functioning State 259

A3.2.4.2 Acoustic Emission

Acoustic emission is the sequence of elastic waves generated by the re-
lease of the internal energy stored in a structure. It becomes manifest in
the higher frequency domain (f > 100 kHz) by elastic waves detected
as vibrations on the structure surface. Acoustic emission represents a
nondestructive method used in order to perceive when and where a flaw
or a crack appears. The nature and the causes of these shortcomings are
determined using complementary methods.

There are four main sources of acoustic emission:

Movements of structural dislocation
Phase transformations
Friction mechanisms (microfrictions, microcollisions)
Formation and development of cracks

In the case of dislocations (movement of a line imperfection within a
crystalline structure) which develop like an avalanche, the signal is con-
tinuous while in the case of phase transformations (the formation of
martensite in carbon steel) the signal is impulse type and can be de-
tected for every transformed grain.

Flaws come into view in the material where the stress outruns
strength tension. New surfaces appear and there is a release of energy
that is partially transformed in acoustic emission. The signal is impulse
type having high frequency. At the same time, friction mechanisms also
emanate acoustic signals. The signal amplitudes in acoustic emission
cover a large area; in relative units these amplitudes are 1 to 10 for
structural movements, 5 to 1000 for phase transformations, and 20 to
1000 for flaws. For machining with machine tools these sources are: con-
tinuous and discontinuous chip forming; deformation of the workpiece
material; cracking of the workpiece or of the tool; or friction between
workpiece, tool, chip breaker, breakage, and collision of the chip. There
are also sources that appear from the functioning of the mechanical sub-
system (bearings, gears) and high-frequency electrical sources.

The propagation of acoustic emission is similar to radio waves.
The source emits spherical wave packages that are influenced by the
surfaces which are intersected; this creates reflections and surface waves
(Fig. A3.9). The heterogeneities of the propagation medium distort the
front waves. Consequently, the mathematical relationships that describe
the real propagation phenomena become very complicated when one
needs to locate and measure the sources and effects of the phenomena.
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FIGURE A3.9 Wave packages influenced by surfaces they intersect.
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Further on, the area of utilizing these methods (based on acoustic emis-
sion) on large steel structures where an uncertainty coefficient can be
accepted, becomes very narrow.

In industry acoustic emission is used for controlling wear and
tool breakage and also for supervising the bearings and hydrodynamic
bearings.

A3.2.4.3 Acoustic Emission Measurement

As shown in the previous section, acoustic emission is constituted from
surface waves. Special piezoelectric transducers connected to the struc-
ture that is to be monitored can perceive them very well. The signal
monitored by the transducer can be processed in two ways: for a contin-
uous emission the most useful information is given by the voltameter;
or for impulse type signals one can use the impulse analyzer. Another
technique is based on counting the impulses using a peak indicator with
an adjustable threshold level.

A3.2.4.4 Acoustic Parameters

Propagation Velocity of Sonic Waves. Sound waves in solids follow
the equation

cl(t) =

√
E(G)

ρ

where E is the longitudinal elasticity module, G is the transversal one,
and ρ1 is the density of the medium, which is homogeneous and isotropic.

The propagation of the sound waves in liquids follows a similar
equation, where ko is the compression modulus:

c =

√
k0

ρ

Sound wave propagation in gases is adiabatic and follows, therefore, the
formula pV γ = const.2, and the propagation velocity is given by the
relation:

c =
√

γp

ρ
=

√
γRT

µ
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where γ3 = cp/cv is the adiabatic exponent, while R is the constant of
perfect gases. For the case of sound wave propagation through air, the
relation remains

c = 332

√
1 +

t

273

where t is the air temperature (◦C), which leads to determination of the
sound wave propagation at a temperature of 20◦C to be approximately
340 m/s.

Sonic pressure, is, by definition, the average of pressure variation,
meaning:

ps =
√

(∆p)2

The acoustic level (level of sonic pressure) is determined as

Lp = 10 log
(

p

p0

)2

= 20 log
(

p

p0

)

where po = 20 mPa is the threshold, considered to be the audibility limit
for a sound having the frequency of 1 Hz.

The intensity of the sound can be defined as the average value of
the acoustic energy that travels through the surface unit, on a direction
perpendicular to the propagation, in a unit of time. The equation of
the sound intensity depends on the propagation area: for the progressive
wave in a free field it is

I =
p2

ef

ρc
4

and for the progressive wave in a fuzzy field it is

I =
p2

ef

4ρc
5

where p2
ef6 is the square average value of the sonic pressure.

The sound intensity level can be described similarly to the acoustic
level; that is,

Li = 10 log
(

I

I0

)
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where Io is the threshold of the acoustic intensity; that is, Io = 10 to 12
W/m2. It can be pointed out that in normal conditions (po = 1 atm. and
to = 22◦C), the difference between the value of the acoustic pressure and
acoustic intensity level is, for the same sound, 0.16 dB, and, therefore,
it can practically be ignored.

The level of acoustic power of a sonic source can be evaluated by
using the relation

Lw = 10 log
(

P

P0

)

where Po is the threshold of the acoustic power level, Po = 10 to 12 W.

A3.3 CORRELATION BETWEEN SOUND
ANALYSIS AND MACHINE TOOL
PERFORMANCE: TECHNICAL
DIAGNOSIS EQUIPMENT

A3.3.1 Time Analysis

The acoustic signal can be considered to be created by a sum of pure
harmonic pulsations having different intensities and frequencies, and
therefore

x(t) = x0 +
n∑

i=1

xi sin
2πt

Ti
.

As previously presented, it is possible to characterize a signal by using
a series of parameters that define the progress of the signal in time
(usually, for one period): absolute arithmetic mean, xA; effective value
(of the squared average), xef ; and pick value, xv, xv = max[x(t)].

Correlation analysis is the most utilized tool for time analysis, be-
ing recommended for linear systems that operate either with continuous
or discrete signals, especially when the ratio between signal and noise has
a small value. Acceptable input values are either stochastic signals or pe-
riodic signals, leading, as a result, to the correlation functions and, as a
particular case of these, the weighted function. The correlation functions
define the level of similarity between two given signals in accordance with
the time delay between them (intercorrelation function):

Rab(τ) = lim
T→∞

1
2T

∫ T

−T

a(t) · b(t + τ)dt
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or, even, the level of similarity of a signal with itself, in accordance with
the time delay (self-correlation function):

Raa(τ) = lim
T→∞

1
2T

∫ T

−T

a(t) · a(t + τ)dt

For the case of a invariant stable and linear system, by noting with
h(k) the weighted function or the reaction of the considered system at an
impulse, the self-correlation function and the intercorrelation function
are connected by a relation having the form:

Rab(τ) =
∞∑

k=0

h(k) · Raa(τ − k)

A correlation graph is a graphical representation of the self-correlation
function in accordance with the time delay. Its form suggests the contents
of the signal’s frequencies. The correlation graph gives a peak value for
t = 0, which is sharper as the contents in high frequencies are richer;
this value is equal to the square mean value of a random process, being,
therefore:

Raa(0) = lim
T→∞

1
2T

∫ T

−T

a(t)a(t)dt = x2(t)

For a linear system, the integral is proportional to the energy along
the interval considered; by dividing this value by the length of the in-
terval one can obtain the average power along that interval, and this is
the physical significance of the value of the square mean.

Figure A3.10 presents some significant types of correlation graphs:
(a) the correlation graph of a random and stationary ideal process (no
noise); (b) the correlation graph of a nonperiodic process for large values
of the time displacement t (the self-correlation functions tend to attend
the square mean value); (c) idem, when the square average value is
zero; and (d) the correlation graph of a random process that conceals a
periodic phenomenon (the correlation graph tends to become a periodic
function in time t).

By calculating the Fourier transform of the self-correlation function
one can obtain the spectral density function of the square mean value
(power spectral density):

	[R(τ)] =
∫ ∞

−∞
R(τ)e−i2πfτdτ = S(f)
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FIGURE A3.10 Significant types of correlation graphs: (a) correlation graph
of random and stationary ideal process (no noise); (b) correlation graph of
nonperiodic process for large values of time displacement t (self-correlation
functions tend to attend the square mean value); (c) idem, when the square
average value is zero; (d) correlation graph of random process that conceals a
periodic phenomenon (correlation graph tends to become a periodic function
in time t).
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This function depicts the manner in which the square mean value (and
the average power, also) is distributed in the domain of frequencies.
A periodic vibration can be represented in the frequency domain by a
band formed by discrete lines, each line representing the square mean
value of the respective harmonic component, while a random vibra-
tion determines a continuous band in the frequency domain; so, the
measured value of the square mean for a given frequency depends on
the utilized bandwidth; that is why the spectral power density is use-
ful. The self-correlation function and the spectral density power form a
pair of Fourier transforms in such a manner that the first one can be
rapidly obtained by applying an inverse Fourier transformation on the
second one.

A3.3.2 Analysis in the Frequency Domain

The acoustic signals can not be analyzed by studying only the amplitude-
time characteristic because this does not furnish sufficient data for a
diagnostic interpretation.

The separation of the vibrations in individual frequency compo-
nents is called frequency analysis (Fig. A3.11), this being a technique
that can be considered as the fundament of the diagnosis, which is based
on studying vibrations and acoustic signals. The curve that indicates the
amplitude of the vibrations versus frequency is called a spectrogram.

The most sophisticated and most precise techniques for establish-
ing the diagnosis of the performance of machine tools and equipment are
based on signal analysis in the frequency domain. This analysis can be
accomplished using various protocols, depending on the element studied,
diagnosis method, and apparatus controlled by the researcher or existing
in a research laboratory.

Gauge apparatuses for measuring vibrations and noise indicate a
unique band of signals evaluated along the entire bandwidth (Fig.A3.12a).
To evaluate the individual frequency components a filter is utilized,
which will allow passing only those signals’ components within a tide
bandwidth. The filter’s passband is successively displaced along the en-
tire domain and as a result a reading of the level of vibration is obtained
in the bandwidth. The filter can be formed either by a series of indi-
vidual filters for fixed frequencies, which are adjacent and successively
scanned (Fig. A3.12b), or by a unique adjustable filter displaced within
the studied frequency domain (Fig. A3.12c).
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FIGURE A3.11 Frequency analysis.

A3.3.2.1 Frequency Analysis for Tight Bandwidth

This kind of analysis is the most common vibration processing procedure
and, due to its precision and the accuracy of the components of the
processed signal, the most utilized method for monitoring and diagnosis.

One can utilize two basic types of filters: constant bandwidth type,
having an absolute bandwidth of 3 Hz, 10 Hz, and so on, and constant
proportional bandwidth type, having a bandwidth expressed as a per-
centage (3%, 10%, etc.) of the selected central frequency.

In Figure A3.13 the difference between these two types of filters
is presented. It should be stressed that the constant proportional band-
width filters were built in order to maintain a constant bandwidth on
logarithmic scales of frequencies, which are ideal for large bandwidths.
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FIGURE A3.12 (a) Unique band of signals evaluated along entire band-
width; (b) series of individual filters for fixed frequencies, adjacent and succes-
sively scanned; (c) unique adjustable filter displaced within studied frequency
domain.
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FIGURE A3.13 Difference between constant bandwidth and constant propor-
tional bandwidth types of filters.
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However, if the frequency scale is linear, a constant bandwidth filter will
give a constant representation, while the constant proportional band-
width filter will show an enlarged bandwidth, which is not an advantage
in practical cases.

Constant proportional bandwidth filter analysis shows the natural
response of the systems to mechanical vibrations and permits a com-
pact representation of a large bandwidth; that is why this is the most
commonly utilized method for measuring the vibrations.

Constant bandwidth filter analysis is utilized for high frequencies,
especially for a linear scale, in order to distinguish the harmonic com-
ponents.

The filter-pass bandwidth establishes the resolution of the fre-
quency analysis to be obtained. The employment of a filter having a
tight bandwidth offers numerous details and permits the isolation of in-
dividual peaks within the band, but has, at the same time, the disadvan-
tage of a increased processing time together with a narrowed bandwidth.
Sometimes a reduction of the processing time is possible through time
compression, that is, fast-forward playing of the recorded signal. In that
way the filter’s bandwidth increases proportionally, and this leads to an
increased scanning rate along the frequency domain.

The ideal filter should let pass all the frequency components that
appear in the bandwidth while eliminating all other frequency compo-
nents. Practically, electronic filters have no perfectly vertical limits, and
therefore do not totally eliminate the components outside the bandwidth
domain.

In practice two methods are utilized for measuring the filter’s band-
width: as the bandwidth of an ideal filter that lets pass the same quantity
of power coming from a white noise source such as the described filter
(Fig. A3.14a); and as the bandwidth of a filter that shows an altering of
3 dB in rapport with the normal transmission level (Fig. A3.14b).

The 3 dB bandwidth will differ considerably from the bandwidth
of effective noise only for low selectivity filters, and therefore one can
consider that the two definitions lead to the same practical result.

A3.3.2.2 Frequency Analysis Using Fourier Series

By using the Fourier theorem and for the given Dirichlet conditions,
the periodic deterministic vibrations can be looked upon as a sum of
harmonic pulsations, having frequencies equal to multiples of a funda-
mental frequency. In this case, the transform in the frequency domain
can be accomplished using Fourier series by decomposing; during the
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FIGURE A3.14 Two methods for measuring filter bandwidth used in practice.

transforming process only one period of the signal is usable. The trans-
formation relations (Fig. A3.15a) convert the continuous periodic signal
from the time domain into a discrete band in the frequency domain, a
band that encloses all the harmonics of the signal. The inverse situation
is also possible by which a discrete signal in time is transformed in a
periodic frequency (Fig. A3.15b). One can observe that due to the sym-
metry and the periodicity of the frequency band a component having the
frequency fc in the continuous signal will appear in the discrete signal
at the frequencies fd = n ∗ fs ± fc, where fs is the discrete frequency
and n = 0,±1,±2, . . . . In this case, in order to avoid ambiguities in
the frequency contents of the continuous signal, a pass filter is utilized,
which is not as broad as the half value of the discrete frequency.

The transform relations shown in Figure A3.15 prove the basic
symmetry of the Fourier transform between the time domain and the
frequency domain.

A3.3.2.3 Frequency Analysis Using Discrete
Fourier Transform

The discrete Fourier transform (DFT) is applied to discrete and periodic
signals in the time domain and the result is, also, a discrete and periodic
signal, but in the frequency domain (Fig. A3.16). Due to the periodicity
in both domains, only a finite number of samples are employed, therefore
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FIGURE A3.15 Transform in frequency domain can be accomplished using
Fourier series.

the transform can be calculated using digital processing, for instance, if
a period of a signal is described in the time domain by N samples along
one period.

The determination of a discrete Fourier transform having N values
within a sequence implies N ∗ N = N2 multiplication and summation
operations of complex numbers, which determine a rapid increase of
the calculation time for a larger number of samples N . Nevertheless,

2002 by Marcel Dekker, Inc. All Rights Reserved.



Diagnosis of the Functioning State 273

FIGURE A3.16 Discrete Fourier transform (DFT) is applied to discrete and
periodic signals in the time domain.

due to the symmetry of the frequency band, only N/2 of them will be
independent. In addition, by utilizing an anti-over imposing filter (having
a bandwidth narrower than half of the sampling frequency) the number
of significant frequency components is reduced even further. Usually, for
a signal in time having 1024 samples only 400 frequency lines from the
band will need to be processed.

A3.3.2.4 Frequency Analysis Utilizing Fast
Fourier Transform

The algorithm of the fast Fourier transform (FFT) is based on several
features of the complex exponential function in order to shorten the cal-
culation time of a regular Fourier transform. In this case, the number of
operations is diminished from N2 to N ∗ log 2N . The signal processing
procedure for the case of FFT analysis is presented in Figure A3.17.
One can observe that it is necessary to input the recorded signal into
a sampling block having an analogue-to-digital conversion element be-
cause the output signal obtained at the output of the transducer has a
continuous variation.

The FFT algorithm considers a record from the time domain as
being a block of N samples equally separated in time, and which can
be transformed into another block of N samples also equally separated
but in the frequency domain (Fig. A3.18). The lowest frequency to be
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FIGURE A3.17 Signal processing procedure for the case of FFT analysis.

FIGURE A3.18 Block of N samples equally separated in time transformed
into another block of N samples also equally separated but in the frequency
domain.
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analyzed by FFT is determined by the length of the record in the time
domain, while the maximum value of the frequency that can be separated
is f max = (N/2) ∗ (1/TR), TR being the record duration.

The necessary calculations for using the FFT algorithm require a
finite time, in terms of the number of samples (usually N = 1024), but
also of the speed of the processor implied. If this calculation (TFFT)
is less than the duration for the recorded signal (TR), the operation is
called the analysis in real-time. In this case, the analyzer processes, along
the duration of a record, a FFT analysis of the preceding record, so no
information from the time domain is lost, a situation that can occur if
TFFT is larger than TR.

The basic relation of the FFT algorithm is still the one known from
the discrete Fourier transform; that is,

G(k) =
1
N

N−1∑
n=0

g(n)e−j(2πkn/N)

a relation that can be written using matrix form as

{Gk} =
1
N

∗ {Akn} ∗ {gn}

where {Gk} and {gn} are the column vectors that include N samples
from the time domain, and {Akn} is an N -square matrix that contains
the complex unit vectors e − j2pkn/N .

For example, the matrix equation is shown in Figure A3.19 for
N = 8. Each arrow in the square matrix depicts a complex unit vector,
with respect to the attached coordinate system. One can observe that a
direct calculation of this matrix implies N ∗ N complex multiplication
operations, which are time consuming. By using the FFT algorithm the

FIGURE A3.19 Matrix equation for N = 8.
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number of multiplication operations reduces to N ∗ log 2N , with the con-
dition that N is a power of 2. Typically, when N = 1024, the processing
time is reduced approximately 100 times.

Errors Introduced by FFT Analysis. The aliasing effect occurs due
to signal sampling in the time field; it shows up by the appearance of
some high frequencies within the field of low frequencies after sampling.
This effect can be removed by purposely installing a low-pass filter before
sampling, to eliminate frequencies larger than one half of the sampling
frequency.

The time window effect is the result of the finite length of record-
ing in the time field; the FFT algorithm deals with this record as a
periodic signal, with the period TR (Fig. A3.20). This approach is good
for transitory signals with a period less than TR; the effect is, however,
harmful for signals with a period larger than TR. Since the signal is “cut
off” through a rectangular window and then is introduced in a loop in
order to apply the FFT algorithm, distortions and discontinuities occur
in transitory areas (Fig. A3.21a). Consequently, the frequency specter
will have a few components that do not exist in the original signal. The
solution is to use a “smooth” window, which has both its value and slope

FIGURE A3.20 Result of finite recording length in time field treated by FFT
algorithm as a periodic signal with period TR.
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FIGURE A3.21 (a) While applying the FFT algorithm, distortions and
discontinuities occur in transitory areas; (b) Hanning window.

equal to zero at both ends. Usually, this window is a Hanning window
with period cos 2(2pt/TR), as in Figure A3.21b. The round peak of a
Hanning window can lead to amplitude estimation errors up to 1.5 dB
(16%). For other types of windows, errors can go down to 0.1 dB (1%).

The picket fence effect is the result of the discrete sampling of
the specter in the frequency field. It appears as if the specter is seen
through the slits of a fence. Consequently, some values, such as peak
values, can not be observed. The possible resultant error depends on
how the characteristics of the adjacent filters overlap (Fig. A3.22). This
effect is much less as the overlap is bigger. For a Hanning window, the
distortions introduced in this way do not exceed 1.4 dB, while for a
rectangular window they reach 3.9 dB. The error can be compensated
where a frequency component “fits” between two spectral lines. The
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FIGURE A3.22 Possible resultant error depends on how characteristics of
adjacent filters overlap.

picket fence effect also occurs in a TFD analysis and it is typical when
third-octave filters are used.

A3.3.2.5 Zoom FFT Analysis

In a FFT analysis, the resolution of the result is determined by the
Nyquist frequency (equal to one half of the sampling frequency), and by
the number of lines in the specter up to the Nyquist frequency. When
a resolution higher than the one offered by the 400 lines of the ba-
sic specter is desired, a Zoom FFT analysis is used. The interest area,
which is between f1 and f2, is selected by moving the origin of the
frequency representation to f1, simultaneously with the passing of the
signal through a low-pass filter, in order to eliminate all components,
except for the range between f1 and f2 (see Fig. A3.23). Zoom FFT
analysis is useful for processing both low-frequency modulated signals,
and signals with a large number of harmonics, as well as for separating
some vibratory phenomena that have very close frequencies.

A3.3.2.6 Frequency Response Function

The Fourier transform allows a theoretic frequency response of a me-
chanical system for different types of excitations. For a linear system
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FIGURE A3.23 When a resolution higher than that offered by 400 lines of the
basic specter is desired, a Zoom FFT analysis is used.

with one degree of freedom, the relationship between the excitation f(t)
and the displacement x(t) of a mass m is given by a linear equation with
constant coefficients:

An
dnx

dtn
+ · · · + Al

dx

dt
+ A0x = Bm

dmf

dxm
+ · · · + Bl

df

dx
+ B0f

Applying the Fourier transform to both members of this relation, it
yields:

X(f)
n∑

k=1

Ak(if)k = F (f)
m∑

j=1

Bj(if)j
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where F (t) and X(t) are the Fourier transforms of the excitation and
the response, respectively. The complex function defined through the
relation

H(f) =
m∑

j=1

Bj(if)j

/
n∑

k=1

Ak(if)k = |H(f)|eiφ(f)

is called the frequency response function.
The relation X(f) = H(f) ∗ F (f) shows that the response specter

is easy to obtain when multiplying the excitation specter by the fre-
quency response specter. The amplitude of the frequency response for
each frequency band is the product of the excitation amplitude by the
frequency response amplitude. The response phase is the sum of the ex-
citation phase with the response phase. By squaring the relation between
amplitudes, the power specter formula is derived:

|X(f)|2 = |F (f)|2 ∗ |H(f)|2

The frequency response function is most often represented through sep-
arating the real member from the imaginary member. For a proportional
damping, the real member is zero, and the imaginary member reaches
its maximum (Fig. A3.24a). Another way to represent the frequency re-
sponse function is the Nyquist diagram, by representing the real member
in terms of the imaginary member (Fig. A3.24b).

The graphical analysis of these diagrams, as proposed by Kennedy
and Pancu as early as 1947 [82], proved to be the most accurate method
to determine the dynamic parameters and the vibration mode shapes of
a complex structure. The frequency response function is also useful for
studying the effects of various excitations upon a mechanical system, for
determining the mechanical impedance (if the excitation is a force and
the response is a velocity), as well as for removing the effects introduced
by signal propagation in order to rebuild the excitation.

A3.3.2.7 Analysis in the Amplitude Field

In general, defects caused by harmful low-speed phenomena (e.g., wear)
have a typical way of evolution: initially they show up as local singular
defects, which generate impulse excitations (shocks); the frequency of
these excitations increases in time and determines the appearance of a
few peaks in the frequency specter. In order to monitor and diagnose the
signal in such situations, an analysis in the amplitude field is indicated,
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FIGURE A3.24 Frequency response function: (a) for a proportional damping, the real member is zero, and the imaginary
member reaches its maximum; (b) another way to represent the frequency response function is the Nyquist diagram.
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by means of two specific functions: the peak factor Fv and the Kurtosis
function β2, defined by the relations:

Fv =
Xv

Xef

β2 =
1
σ4

∫ ∞

−∞
(X − X)4p(x)dx

where Xv is the amplitude of the peak signal, Xef is the effective value
(mean square) of the signal with the amplitude X, X is the average
value of the signal’s amplitude, p(x) is the probability density of the
amplitude, and σ is the amplitude dispersion.

The peak factor is utilized especially in the amplitude analysis
of determinist signals; the Kurtosis function can be used for random
signals, too. For different situations, the Kurtosis function is given in
tables in the literature. Note that, for machines and equipment in nor-
mal operating status, this function is 3, which is considered a reference
value. An increase of this value in time, determined by the appearance
of impulse-type processes, shows the appearance and further evolution
of a defect.

A3.3.3 Acoustic Emission Analysis

More methods are available for acoustic emission study, depending on
the type of the selected signal. Therefore, a general evaluation is first
necessary.

A3.3.3.1 Method of Counting Impulses

This method is useful for impulse-type signals. An evaluation of impulses
that pass over a previously set threshold value is done. For the evalu-
ation, the measuring chain consists of a device that differentiates the
amplitude level of impulses, followed by an impulse counter (per time
unit or per total).

The simple counting of impulses (Fig. A3.25c) can be improved
through an evaluation of the impulse area (Fig. A3.25a), in order to take
into consideration the duration of the impulse, possibly by introducing
a combination of thresholds (Fig. A3.25b).

A3.3.3.2 Method of Impulse Amplitude Mediation

This method is utilized when the acoustic emission shows up through
continuous signals. Calculation of the effective value (RMS) is significant
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FIGURE A3.25 Evaluation of impulses: (a) Evaluation of impulse area;
(b) combination of thresholds; (c) simple counting of impulses.
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because, as shown in Section A3.2.2.1, this value is proportional to the
signal’s power/energy. This method is sometimes called the energetic
analysis of impulses.

A3.3.3.3 Method of Source Localization

This method provides information about characteristics and changes of
the source and of the wave trajectory. Controlled elastic waves are cre-

FIGURE A3.26 Locating a source using two transducers.
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ated by means of ultrasound sources. The ultrasonic wavetrain is char-
acterized by a factor of the simultaneous wave, which depends on the
succession of impulse frequencies, impulse duration, and the number of
peaks that exceed a certain threshold. In this way, fracture areas in
composite materials can be localized in advance.

In Figure A3.26, the way in which a source is localized is presented,
in two dimensions, by means of two transducers. The difference between
the arrival time of the signal at two transducers determines a plane
hyperbola, provided the propagation velocity of the signal is known.
The intersection of the hyperbolas obtained from the transducer pairs
(1,2), (1,3), and (2,3) defines the real location of the source. This method
is extremely useful for diagnosing, for localizing the source of primary
defects, and for reducing the time to restore the operational status.

A3.3.4 CONCLUSIONS

A3.3.4.1 Requirements for Diagnostic Systems

Usage of diagnostic systems should be related to the importance of the
system monitored within a fabrication process, taking into account its
complexity and performance. Usually, a monitoring process is conducted
for complex or continuously working equipment.

For efficiency in monitoring and detection of defects, the analysis
and diagnostic have to respect a minimum requirement set:

Must be adequate for the monitored equipment and have the ability
and enough accuracy to detect defects.

Notification of defects must be in due time; false alarms must be
avoided.

Must allow localization of defects in order to minimize the inter-
vention time for repairs.

Must ensure, as much as possible, a correlation of parameters
that accompany the equipment work (vibration, noise, temper-
ature, pressure, etc.), in order to gather complete and correct
information.

Must be easy to use and must not raise maintenance problems.
Must be resistant to shipping and handling, to dust, moisture, and

industrial liquids, to low and high temperatures, and sometimes
to radiation.

Must not be supplied from the same energy sources as the moni-
tored system, but from special, stabilized, protected sources.
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The reliability of the diagnostic system must be clearly higher than
the reliability of the monitored system.

The cost of the diagnostic system and its installation must not
exceed 10% of the cost of the monitored system.

A3.3.4.2 Implementation Stages

Finding a technical diagnostic for complex systems is possible only after
their dynamics and kinematics are well known. This will lead to deter-
mination of factors to be monitored, types of transducers to be used, as
well as locations in which those transducers would be installed.

When processing signals, the normal and maximum admissible lev-
els of the monitored parameters should be taken into consideration. The
sensitive points of diagnostic systems are: the signal processor, which ex-
tracts the necessary data from the raw signal, and the diagnostic proces-
sor, which uses these data in order to identify the status of the monitored
system and to localize and isolate the defect.
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